Energy optimization for many-core platforms: communication and PVT aware voltage-Island formation and voltage selection algorithm

  • Authors:
  • Sohaib S. Majzoub;Resve A. Saleh;Steven J. E. Wilton;Rabab K. Ward

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada;Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada;Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada;Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.03

Visualization

Abstract

In this paper, we propose a novel approach to voltage-island formation, for the energy optimization of manycore architectures, which mitigates the impact of process, voltage, and temperature (PVT) variations. The islands are created by balancing their shape constraints imposed by intra and interisland communication with the desire to limit the spatial extent of each island to minimize PVT impact. In addition, to reduce the number of voltage levels in the design, we propose an efficient voltage selection approach that provides near optimal results, for a set of 33 examined cases, with more than a ten times speedup compared to the best-known previous methods. This runtime improvement is important, especially for large many-core platforms. Finally, we present an evaluation platform considering pre-fabrication and post-fabrication PVT scenarios where multiple applications with hundreds to thousands of tasks are mapped onto many-core platforms with hundreds to thousands of cores to evaluate the proposed techniques. Results show that the average energy savings for 33 test cases using the proposed methods are 37% compared to 16% obtained using previous methods.