Efficient Geometric Algorithms on the EREW PRAM

  • Authors:
  • Danny Z. Chen

  • Affiliations:
  • -

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 1995

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a technique that can be used to obtain efficient parallel geometric algorithms in the EREW PRAM computational model. This technique enables us to solve optimally a number of geometric problems in O(log n) time using O(n/log n) EREW PRAM processors, where n is the input size of a problem. These problems include: computing the convex hull of a set of points in the plane that are given sorted, computing the convex hull of a simple polygon, computing the common intersection of half-planes whose slopes are given sorted, finding the kernel of a simple polygon, triangulating a set of points in the plane that are given sorted, triangulating monotone polygons and star-shaped polygons, and computing the all dominating neighbors of a sequence of values. PRAM algorithms for these problems were previously known to be optimal (i.e., in O(log n) time and using O(n/log n) processors) only on the CREW PRAM, which is a stronger model than the EREW PRAM