Optimizing dominant time constant in RC circuits

  • Authors:
  • L. Vandenberghe;S. Boyd;A. El Gamal

  • Affiliations:
  • Dept. of Electr. Eng., California Univ., Los Angeles, CA;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

Conventional methods for optimal sizing of wires and transistors use linear resistor-capacitor (RC) circuit models and the Elmore delay as a measure of signal delay. If the RC circuit has a tree topology, the sizing problem reduces to a convex optimization problem that can be solved using geometric programming. The tree topology restriction precludes the use of these methods in several sizing problems of significant importance to high-performance deep submicron design, including for example, circuits with loops of resistors, e.g., clock distribution meshes and circuits with coupling capacitors, e.g., buses with crosstalk between the wires. In this paper, we propose a new optimization method that can be used to address these problems. The method is based on the dominant time constant as a measure of signal propagation delay in an RC circuit instead of Elmore delay. Using this measure, sizing of any RC circuit can be cast as a convex optimization problem and solved using recently developed efficient interior-point methods for semidefinite programming. The method is applied to three important sizing problems: clerk mesh sizing and topology design, sizing of tristate buses, and sizing of bus line widths and spacings taking crosstalk into account