Global routing based on Steiner min-max trees

  • Authors:
  • C. Chiang;M. Sarrafzadeh;C. K. Wong

  • Affiliations:
  • Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

Global routing of multiterminal nets is studied. A novel global router is proposed; each step consists of finding a tree, called a Steiner min-max tree, that is Steiner tree with maximum-weight edge minimized (real vertices represent channels containing terminals of a net, Steiner vertices represent intermediate channels, and weights correspond to densities). An O (min{e loglog e, n2}) time algorithm is proposed for obtaining a Steiner min-max tree in a weighted graph with e edges and n vertices. (This result should be contrasted with the NP-completeness of the traditional minimum-length Steiner tree problem). Experimental results on difficult examples, on randomly generated data, on master slice chips, and on benchmark examples from the Physical Design Workshop are included