An edge-based heuristic for Steiner routing

  • Authors:
  • M. Borah;R. M. Owens;M. J. Irwin

  • Affiliations:
  • Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

A new approximation heuristic for finding a rectilinear Steiner tree of a set of nodes is presented. It starts with a rectilinear minimum spanning tree of the nodes and repeatedly connects a node to the nearest point on the rectangular layout of an edge, removing the longest edge of the loop thus formed. A simple implementation of the heuristic using conventional data structures is compared with previously existing algorithms. The performance (i.e., quality of the route produced) of our algorithm is as good as the best reported algorithm, while the running time is an order of magnitude better than that of this best algorithm. It is also shown that the asymptotic time complexity for the algorithm can be improved to O(n log n), where n is the number of points in the set