Building Verifiable Trusted Path on Commodity x86 Computers

  • Authors:
  • Zongwei Zhou;Virgil D. Gligor;James Newsome;Jonathan M. McCune

  • Affiliations:
  • -;-;-;-

  • Venue:
  • SP '12 Proceedings of the 2012 IEEE Symposium on Security and Privacy
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

A trusted path is a protected channel that assures the secrecy and authenticity of data transfers between a user's input/output (I/O) device and a program trusted by that user. We argue that, despite its incontestable necessity, current commodity systems do not support trusted path with any significant assurance. This paper presents a hyper visor-based design that enables a trusted path to bypass an untrusted operating-system, applications, and I/O devices, with a minimal Trusted Computing Base (TCB). We also suggest concrete I/O architectural changes that will simplify future trusted-path system design. Our system enables users to verify the states and configurations of one or more trusted-paths using a simple, secret less, hand-held device. We implement a simple user-oriented trusted path as a case study.