Reducing call dropping in distributed dynamic channel assignment algorithms by incorporating power control in wireless ad hoc networks

  • Authors:
  • D. Grace;T. C. Tozer;A. G. Burr

  • Affiliations:
  • Dept. of Electron., York Univ.;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

Methods of substantially reducing call dropping in networks which use distributed dynamic channel assignment (DDCA) schemes are discussed. Interference and received power thresholds coupled with power control are used to maintain performance, without the need for intra-cell handoffs. It is shown that the schemes reduce call dropping and increase capacity compared to those using fixed transmitter power. The schemes are developed with the aid of mathematical analysis and a pictorial model. Results are presented which show that call dropping may be virtually eliminated in shadowing environments with the median transmitter power being reduced by 15 dB. The various call dropping mechanisms are discussed, and it is suggested that the residual level of call dropping is principally a result of multiple additional call arrivals close to an active link. Methods to make further reductions in the call dropping probability are also proposed