Random Signal Levels for Channel Access in Packet Broadcast Networks

  • Authors:
  • C. Lee

  • Affiliations:
  • Dept. of Electr. Eng. and Comput. Sci., Northwestern Univ., Evanston, IL, USA

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

In this paper, it is proposed to employ random multiple signal levels for channel access in packet broadcast networks. We present priority-free random access protocols that possess the advantage of capture effect. The presented schemes are applied to the slotted ALOHA, and the performance is analyzed based on a conservative capture model. Closed-form expressions for the system throughput are derived for a general two-signal level system and a generalm-signallevel system. It is shown that the maximum throughput for the twolevel system increases from 0.47 to 0.52 as the separation between the two levels increases. For them-level system, the maximum throughput increases from 0.52 to 0.66 asmincreases from three to infinity. Then a rotary-priority sure-capture random access scheme is presented, which can achieve perfect channel utilization. The time-delay characteristic and the throughput-delay tradeoff are analyzed for the simplest two-level system for which the higher level is double the lower level. The results compare favorably to those of the conventional slotted ALOHA system which employs a single signal level for packet transmission. A number of open problems are addressed.