Energy aware power allocation strategies for multihop-cooperative transmission schemes

  • Authors:
  • Stefano Savazzi;Umberto Spagnolini

  • Affiliations:
  • Dipt. di Elettronica e Informazione, Politecnico di Milano;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2007

Quantified Score

Hi-index 0.07

Visualization

Abstract

This paper is focused on the optimization of transmitted power in a cooperative decoded relaying scheme for nodes belonging to the single primary route towards. a destination. The proposed transmission protocol, referred to as Multihop Cooperative Transmission Chain (MCTC), is based on the linear combination of copies of the same message by multiple previous terminals along the route in order to maximize the multihop diversity. Power allocations among transmitting nodes in the route can be obtained according to the average (not instantaneous) node-to-node path attenuation using a recursive power assignment. The latter can be employed locally on each node with limited signalling exchange (for fixed or nomadic terminals) among nodes. In this paper the power assignments for the MCTC strategy employing conventional linear combining schemes at receivers (i.e., selection combining, maximal ratio combining and equal gain combining) have been derived analytically when the power optimization is constrained to guarantee the end-to-end outage probability. In particular, we show that the power assignment that minimize the maximum spread of received power (min-max strategy) can efficiently exploit the multihop diversity. In addition, for ad hoc networks where the energy of each node is an issue, the MCTC protocol with the min-max power assignment increases considerably the network lifetime when compared to non-cooperative multihop schemes