Network delay analysis of a class of fair queueing algorithms

  • Authors:
  • S. J. Golestani

  • Affiliations:
  • Bellcore, Morristown, NJ

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

A self-clocked fair queueing (SCFQ) scheme has been proposed by Golestani (see Proc. IEEE INFOCOM, p. 636-636, 1994) as an easily implementable version of fair queueing. In this paper, the worst case network delay performance of a class of fair queueing algorithms, including the SCFQ scheme, is studied. We build upon and generalize the methodology developed by Parekh and Gallager (see ACM/IEEE Trans. Networking, vol.1, no.3, p.344-357, 1993, and vol.2, no.2, p.137-150, 1994) to study this class of algorithms based on the leaky-bucket characterization of traffic. Under modest resource allocation conditions, the end-to-end session delays and backlogs corresponding to this class of algorithms are shown to be bounded. For the SCFQ scheme, these bounds are larger, but practically as good as the corresponding bounds for the PGPS scheme. It is shown that the SCFQ scheme can provide adequate performance guarantees for the delay-sensitive traffic in ATM