Dynamic directional gradient vector flow for snakes

  • Authors:
  • Jierong Cheng;Say Wei Foo

  • Affiliations:
  • Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore;-

  • Venue:
  • IEEE Transactions on Image Processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.01

Visualization

Abstract

Snakes, or active contour models, have been widely used in image segmentation. However, most present snake models do not discern between positive and negative step edges. In this paper, a new type of dynamic external force for snakes named dynamic directional gradient vector flow (DDGVF) is proposed that uses this information for better performance. It makes use of the gradients in both x and y directions and deals with the external force field for the two directions separately. In snake deformation, the DDGVF field is utilized dynamically according to the orientation of snake in each iteration. Experimental results demonstrate that the DDGVF snake provides a much better segmentation than GVF snake in situations when edges of different directions are present which pose confusion for segmentation.