A unified rate-distortion analysis framework for transform coding

  • Authors:
  • Zhihai He;S. K. Mitra

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

In our previous work, we have developed a rate-distortion (R-D) modeling framework for H.263 video coding by introducing the new concepts of characteristic rate curves and rate curve decomposition. In this paper, we further show it is a unified R-D analysis framework for all typical image/video transform coding systems, such as embedded zero-tree wavelet (EZW), set partitioning in hierarchical trees (SPIHT) and JPEG image coding; MPEG-2, H.263, and MPEG-4 video coding. Based on this framework, a unified R-D estimation and control algorithm is proposed for all typical transform coding systems. We have also provided a theoretical justification for the unique properties of the characteristic rate curves. A linear rate regulation scheme is designed to further improve the estimation accuracy and robustness, as well as to reduce the computational complexity of the R-D estimation algorithm. Our extensive experimental results show that with the proposed algorithm, we can accurately estimate the R-D functions and robustly control the output bit rate or picture quality of the image/video encoder