A robust fine granularity scalability using trellis-based predictive leak

  • Authors:
  • Hsiang-Chun Huang;Chung-Neng Wang;Tihao Chiang

  • Affiliations:
  • Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu;-;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recently, the MPEG-4 committee has approved the MPEG-4 fine granularity scalability (FGS) profile as a streaming video tool. We propose novel techniques to improve further the temporal prediction at the enhancement layer so that coding efficiency is superior to the existing FGS. Our approach utilizes two parameters, the number of bitplanes, β (0⩽β⩽maximal number of bitplanes), and the amount of predictive leak, α (0⩽α⩽1), to control the construction of the reference frame at the enhancement layer. Parameters α and β can be selected for each frame to provide tradeoffs between coding efficiency and error drift. Our approach offers a general and flexible framework that allows further optimization. It also includes several well-known motion-compensated FGS techniques as special cases with particular sets of α and β. We analyze the theoretical advantages when α and β are used, and provide an adaptive technique to select α and β, which yields an improved performance as compared to that of fixed parameters. An identical technique is applied to the base layer for further improvement. Our experimental results show over 4 dB improvements in coding efficiency using the MPEG-4 testing conditions. Removal of error propagation is demonstrated with several typical channel transmission scenarios