Rate-distortion analysis for H.264/AVC video coding and its application to rate control

  • Authors:
  • S. Ma;Wen Gao;Yan Lu

  • Affiliations:
  • Digital Media Lab., Chinese Acad. of Sci., Beijing, China;-;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, an efficient rate-control scheme for H.264/AVC video encoding is proposed. The redesign of the quantization scheme in H.264/AVC results in that the relationship between the quantization parameter and the true quantization stepsize is no longer linear. Based on this observation, we propose a new rate-distortion (R-D) model by utilizing the true quantization stepsize and then develop an improved rate-control scheme for the H.264/AVC encoder based on this new R-D model. In general, the current R-D optimization (RDO) mode-selection scheme in H.264/AVC test model is difficult for rate control, because rate control usually requires a predetermined set of motion vectors and coding modes to select the quantization parameter, whereas the RDO does in the different order and requires a predetermined quantization parameter to select motion vectors and coding modes. To tackle this problem, we develop a complexity-adjustable rate-control scheme based on the proposed R-D model. Briefly, the proposed scheme is a one-pass process at frame level and a partial two-pass process at macroblock level. Since the number of macroblocks with the two-pass processing can be controlled by an encoder parameter, the fully one-pass implementation is a subset of the proposed algorithm. An additional topic discussed in this paper is about video buffering. Since a hypothetical reference decoder (HRD) has been defined in H.264/AVC to guarantee that the buffers never overflow or underflow, the more accurate rate-allocation schemes are proposed to satisfy these requirements of HRD.