Convergence of hypervolume-based archiving algorithms ii: competitiveness

  • Authors:
  • Karl Bringmann;Tobias Friedrich

  • Affiliations:
  • Max-Planck-Institut für Informatik, Saarbrücken, Germany;Max-Planck-Institut für Informatik, Saarbrücken, Germany

  • Venue:
  • Proceedings of the 14th annual conference on Genetic and evolutionary computation
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the convergence behavior of (μ+λ)-archiving algorithms. A (μ+λ)-archiving algorithm defines how to choose in each generation μ children from μ parents and λ offspring together. Archiving algorithms have to choose individuals online without knowing future offspring. Previous studies assumed the offspring generation to be best-case. We assume the initial population and the offspring generation to be worst-case and use the competitive ratio to measure how much smaller hypervolumes an archiving algorithm finds due to not knowing the future in advance. We prove that all archiving algorithms which increase the hypervolume in each step (if they can) are only μ-competitive. We also present a new archiving algorithm which is (4+2/μ)-competitive. This algorithm not only achieves a constant competitive ratio, but is also efficiently computable. Both properties provably do not hold for the commonly used greedy archiving algorithms, for example those used in SIBEA, SMS-EMOA, or the generational MO-CMA-ES.