On the analysis of the simple genetic algorithm

  • Authors:
  • Pietro S. Oliveto;Carsten Witt

  • Affiliations:
  • University of Birmingham, Birmingham, United Kingdom;Technical University of Denmark, Lyngby, Denmark

  • Venue:
  • Proceedings of the 14th annual conference on Genetic and evolutionary computation
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

For many years it has been a challenge to analyze the time complexity of Genetic Algorithms (GAs) using stochastic selection together with crossover and mutation. This paper presents a rigorous runtime analysis of the well-known Simple Genetic Algorithm (SGA) for OneMax. It is proved that the SGA has exponential runtime with overwhelming probability for population sizes up to μ≤ n1/8-ε for some arbitrarily small constant ε and problem size n. To the best of our knowledge, this is the first time non-trivial lower bounds are obtained on the runtime of a standard crossover-based GA for a standard benchmark function. The presented techniques might serve as a first basis towards systematic runtime analyses of GAs.