Bioinspired computation in combinatorial optimization: algorithms and their computational complexity

  • Authors:
  • Frank Neumann;Carsten Witt

  • Affiliations:
  • The University of Adelaide, Adelaide, Australia;Technical University of Denmark, Kgs. Lyngby, Denmark

  • Venue:
  • Proceedings of the 14th annual conference companion on Genetic and evolutionary computation
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bioinspired computation methods, such as evolutionary algorithms and ant colony optimization, are being applied successfully to complex engineering and combinatorial optimization problems, and it is very important that we understand the computational complexity of these algorithms. This tutorials explains the most important results achieved in this area. The presenters show how runtime behavior can be analyzed in a rigorous way, in particular for combinatorial optimization. They present well-known problems such as minimum spanning trees, shortest paths, maximum matching, and covering and scheduling problems. Classical single objective optimization is examined first. They then investigate the computational complexity of bioinspired computation applied to multiobjective variants of the considered combinatorial optimization problems, and in particular they show how multiobjective optimization can help to speed up bioinspired computation for single-objective optimization problems. The tutorial is based on a book written by the authors with the same title. Further information about the book can be found at www.bioinspiredcomputation.com.