A Hybrid Scheme for On-Chip Voltage Regulation in System-On-a-Chip (SOC)

  • Authors:
  • Juliana Gjanci;Masud H. Chowdhury

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago,;Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago,

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Conventional off-chip or single-stage on-chip converter will fail to meet the demand for different supply voltage domains for various functional blocks/cores in traditional or future multi-/many-core system-on-a-chips (SOCS). In this paper, a hybrid two-stage voltage regulation scheme is proposed, where the first stage consists of a switching voltage regulator located off-chip, and the second stage consists of a tree structure of linear regulators located on the chip. This approach proves to be efficient, simple and less costly compared to other options that offer total on-chip integration of a switching regulators. The difficulties and limitations of on-chip switching regulator have been analyzed. For the tree structure of on-chip linear regulators two different architectures (cascaded and parallel) have been proposed. It is demonstrated that a cascaded tree of linear regulators is a better solution than a parallel tree structure from performance point of view.