Empirical investigation of search algorithms for environment model-based testing of real-time embedded software

  • Authors:
  • Muhammad Zohaib Iqbal;Andrea Arcuri;Lionel Briand

  • Affiliations:
  • Simula Research Laboratory, Norway / University of Oslo, Norway;Simula Research Laboratory, Norway;University of Luxembourg, Luxembourg / Simula Research Laboratory, Norway

  • Venue:
  • Proceedings of the 2012 International Symposium on Software Testing and Analysis
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

System testing of real-time embedded systems (RTES) is a challenging task and only a fully automated testing approach can scale up to the testing requirements of industrial RTES. One such approach, which offers the advantage for testing teams to be black-box, is to use environment models to automatically generate test cases and oracles and an environment simulator to enable earlier and more practical testing. In this paper, we propose novel heuristics for search-based, RTES system testing which are based on these environment models. We evaluate the fault detection effectiveness of two search-based algorithms, i.e., Genetic Algorithms and (1+1) Evolutionary Algorithm, when using these novel heuristics and their combinations. Preliminary experiments on 13 carefully selected, non-trivial artificial problems, show that, under certain conditions, these novel heuristics are effective at bringing the environment into a state exhibiting a system fault. The heuristic combination that showed the best overall performance on the artificial problems was applied on an industrial case study where it showed consistent results.