An observable and controllable testing framework for modern systems

  • Authors:
  • Tingting Yu

  • Affiliations:
  • University of Nebraska-Lincoln, USA

  • Venue:
  • Proceedings of the 2013 International Conference on Software Engineering
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern computer systems are prone to various classes of runtime faults due to their reliance on features such as concurrency and peripheral devices such as sensors. Testing remains a common method for uncovering faults in these systems. However, commonly used testing techniques that execute the program with test inputs and inspect program outputs to detect failures are often ineffective. To test for concurrency and temporal faults, test engineers need to be able to observe faults as they occur instead of relying on observable incorrect outputs. Furthermore, they need to be able to control thread or process interleavings so that they are deterministic. This research will provide a framework that allows engineers to effectively test for subtle and intermittent faults in modern systems by providing them with greater observability and controllability.