MapReduce for parallel reinforcement learning

  • Authors:
  • Yuxi Li;Dale Schuurmans

  • Affiliations:
  • College of Computer Science and Engineering, Univ. of Electronic Science and Technology of China, Chengdu, China;Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

  • Venue:
  • EWRL'11 Proceedings of the 9th European conference on Recent Advances in Reinforcement Learning
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We investigate the parallelization of reinforcement learning algorithms using MapReduce, a popular parallel computing framework. We present parallel versions of several dynamic programming algorithms, including policy evaluation, policy iteration, and off-policy updates. Furthermore, we design parallel reinforcement learning algorithms to deal with large scale problems using linear function approximation, including model-based projection, least squares policy iteration, temporal difference learning and recent gradient temporal difference learning algorithms. We give time and space complexity analysis of the proposed algorithms. This study demonstrates how parallelization opens new avenues for solving large scale reinforcement learning problems.