Semantics and reasoning for control application engineering models

  • Authors:
  • David Hästbacka;Seppo Kuikka

  • Affiliations:
  • Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland;Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland

  • Venue:
  • ICAISC'12 Proceedings of the 11th international conference on Artificial Intelligence and Soft Computing - Volume Part I
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Development of advanced systems requires new methods to improve quality and efficiency of engineering processes, and to assist management of complex models encompassing different engineering disciplines. Methods such as model-driven development and domain-specific modeling facilitate development from this perspective but reduce interoperability and other prospects of rationalizing processes, on the other hand. An approach applying OWL semantics and reasoning to models is presented with examples to support industrial control application engineering. Using the methods, generalized classifications are inferred from instance models and combined with generic engineering knowledge maintained in ontologies. Reasoning allows identifying assemblies and structures outside the scope of traditional modeling to detect flaws and error-prone designs. The results indicate that OWL semantics and reasoning can be used as a supplement furthering typical development practices.