Strong security from probabilistic signature schemes

  • Authors:
  • Sven Schäge

  • Affiliations:
  • University College London, UK

  • Venue:
  • PKC'12 Proceedings of the 15th international conference on Practice and Theory in Public Key Cryptography
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce a new and very weak security notion for signature schemes called target randomness security. In contrast to previous security definitions we focus on signature schemes with (public coin) probabilistic signature generation where the randomness used during signature generation is exposed as part of the signature. To prove practical usefulness of our notion we present a new signature transformation for mapping target randomness secure signature schemes to weakly secure signature schemes. It is well-known that, using chameleon hash functions, the resulting weakly secure scheme can then be turned into a fully secure one. Our transformation outputs signature schemes that in general produce signatures with l elements, where l is the bit length of the input randomness. We present an instantiation of a target randomness secure signature scheme based on the RSA assumption and show that after applying our new signature transformation to this scheme, we can accumulate the l signature elements into a single element. This results in a new efficient RSA-based signature scheme. In contrast to traditional security definitions, all signature schemes obtained with our transformation enjoy strong security, i.e. they remain secure even if the adversary outputs a new signature on a previously queried message. In our proofs, we rely on the prefix-based technique introduced by Hohenberger and Waters at Crypto'09. However, using a precise analysis we are able decrease the security loss in proofs relying on the prefix-based technique. This result may be of independent interest.