From selective to full security: semi-generic transformations in the standard model

  • Authors:
  • Michel Abdalla;Dario Fiore;Vadim Lyubashevsky

  • Affiliations:
  • Département d'Informatique, École normale supérieure, France;Department of Computer Science, New York University;Département d'Informatique, École normale supérieure, France

  • Venue:
  • PKC'12 Proceedings of the 15th international conference on Practice and Theory in Public Key Cryptography
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose an efficient, standard model, semigeneric transformation of selective-secure (Hierarchical) Identity-Based Encryption schemes into fully secure ones. The main step is a procedure that uses admissible hash functions (whose existence is implied by collision-resistant hash functions) to convert any selective-secure wildcarded identity-based encryption (WIBE) scheme into a fully secure (H)IBE scheme. Since building a selective-secureWIBE, especially with a selective-secure HIBE already in hand, is usually much less involved than directly building a fully secure HIBE, this transform already significantly simplifies the latter task. This black-box transformation easily extends to schemes secure in the Continual Memory Leakage (CML) model of Brakerski et al. (FOCS 2010), which allows us obtain a new fully secure IBE in that model. We furthermore show that if a selective-secure HIBE scheme satisfies a particular security notion, then it can be generically transformed into a selective-secure WIBE. We demonstrate that several current schemes already fit this new definition, while some others that do not obviously satisfy it can still be easily modified into a selective-secure WIBE.