Scheduling coupled-operation jobs with exact time-lags

  • Authors:
  • A. Condotta;N. V. Shakhlevich

  • Affiliations:
  • -;-

  • Venue:
  • Discrete Applied Mathematics
  • Year:
  • 2012

Quantified Score

Hi-index 0.04

Visualization

Abstract

Scheduling coupled-operation jobs with exact time-lags on a single machine has a wide range of applications. In that problem, each job consists of two operations with given processing times, which should be scheduled on a single machine observing a given time-lag. The general case of the problem with arbitrary processing times of operations and arbitrary time lags is known to be NP-hard in the strong sense and the problem remains NP-hard for many special cases. In order to develop a local search algorithm for the problem, we first explore two possible approaches for representing feasible solutions and their neighborhoods based on maintaining a permutation of first operations of the jobs or maintaining a full permutation of all operations. The first representation appears to be unpromising since, as we prove, the problem of finding an optimal sequence of second operations for a fixed sequence of first operations is NP-hard in the strong sense even in the case of unit processing times. We elaborate the second approach by developing a tabu search heuristic based on efficient job re-insertion. Empirical evaluation demonstrates superiority of the developed algorithm in comparison with the earlier published algorithms.