Automatic CUDA code synthesis framework for multicore CPU and GPU architectures

  • Authors:
  • Hanwoong Jung;Youngmin Yi;Soonhoi Ha

  • Affiliations:
  • School of EECS, Seoul National University, Seoul, Korea;School of ECE, University of Seoul, Seoul, Korea;School of EECS, Seoul National University, Seoul, Korea

  • Venue:
  • PPAM'11 Proceedings of the 9th international conference on Parallel Processing and Applied Mathematics - Volume Part I
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recently, general purpose GPU (GPGPU) programming has spread rapidly after CUDA was first introduced to write parallel programs in high-level languages for NVIDIA GPUs. While a GPU exploits data parallelism very effectively, task-level parallelism is exploited as a multi-threaded program on a multicore CPU. For such a heterogeneous platform that consists of a multicore CPU and GPU, we propose an automatic code synthesis framework that takes a process network model specification as input and generates a multithreaded CUDA code. With the model based specification, one can explicitly specify both function-level and loop-level parallelism in an application and explore the wide design space in mapping of function blocks and selecting the communication methods between CPU and GPU. The proposed technique is complementary to other high-level methods of CUDA programming.