Fragment-parallel composite and filter

  • Authors:
  • Anjul Patney;Stanley Tzeng;John D. Owens

  • Affiliations:
  • University of California, Davis;University of California, Davis;University of California, Davis

  • Venue:
  • EGSR'10 Proceedings of the 21st Eurographics conference on Rendering
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a strategy for parallelizing the composite and filter operations suitable for an order-independent rendering pipeline implemented on a modern graphics processor. Conventionally, this task is parallelized across pixels/subpixels, but serialized along individual depth layers. However, our technique extends the domain of parallelization to individual fragments (samples), avoiding a serial dependence on the number of depth layers, which can be a constraint for scenes with high depth complexity. As a result, our technique scales with the number of fragments and can sustain a consistent and predictable throughput in scenes with both low and high depth complexity, including those with a high variability of depth complexity within a single frame. We demonstrate composite/filter performance in excess of 50M fragments/sec for scenes with more than 1500 semi-transparent layers.