Characterization of forward rectilinear-gait performance for a snake-inspired robot

  • Authors:
  • James K. Hopkins;Satyandra K. Gupta

  • Affiliations:
  • University of Maryland, College Park, Maryland;University of Maryland, College Park, Maryland

  • Venue:
  • Proceedings of the Workshop on Performance Metrics for Intelligent Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Snake-inspired locomotion is much more maneuverable compared to conventional locomotion concepts and it enables a robot to navigate through rough terrain. A rectilinear gait is quite flexible and has the following benefits: functionality on a wide variety of terrains, enables a highly stable robot platform, and provides pure undulatory motion without passive wheels. However, historically speed has been a limitation for the locomotion type. In this paper, Fused Deposition Modeling (FDM) is utilized to reduced the weight and thereby increase the speed potential of a snake-inspired robot design based on a rectilinear gait. FDM also provides feasibility for development of complex and capable mechanism designs for executing rectilinear motion. The new design is analyzed, fabrication and evaluated based on various anchoring material velocity experiments.