Trust prediction via aggregating heterogeneous social networks

  • Authors:
  • Jin Huang;Feiping Nie;Heng Huang;Yi-Cheng Tu

  • Affiliations:
  • University of Texas at Arlington, Arlington, TX, USA;University of Texas at Arlington, Arlington, TX, USA;University of Texas at Arlington, Arlington, TX, USA;University of South Florida, Tampa, FL, USA

  • Venue:
  • Proceedings of the 21st ACM international conference on Information and knowledge management
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Along with the increasing popularity of social web sites, users rely more on the trustworthiness information for many online activities among users. However, such social network data often suffers from severe data sparsity and are not able to provide users with enough information. Therefore, trust prediction has emerged as an important topic in social network research. Traditional approaches explore the topology of trust graph. Previous research in sociology and our life experience suggest that people who are in the same social circle often exhibit similar behavior and tastes. Such ancillary information, is often accessible and therefore could potentially help the trust prediction. In this paper, we address the link prediction problem by aggregating heterogeneous social networks and propose a novel joint manifold factorization (JMF) method. Our new joint learning model explores the user group level similarity between correlated graphs and simultaneously learns the individual graph structure, therefore the shared structures and patterns from multiple social networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction in the target graph, but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize the objective function, we break down the proposed objective function into several manageable sub-problems, then further establish the theoretical convergence with the aid of auxiliary function. Extensive experiments were conducted on real world data sets and all empirical results demonstrated the effectiveness of our method.