Cell vs. WiFi: on the performance of metro area mobile connections

  • Authors:
  • Joel Sommers;Paul Barford

  • Affiliations:
  • Colgate University, Hamilton, NY, USA;University of Wisconsin, Madison, WI, USA

  • Venue:
  • Proceedings of the 2012 ACM conference on Internet measurement conference
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cellular and 802.11 WiFi are compelling options for mobile Internet connectivity. The goal of our work is to understand the performance afforded by each of these technologies in diverse environments and use conditions. In this paper, we compare and contrast cellular and WiFi performance using crowd-sourced data from Speedtest.net. Our study considers spatio-temporal performance (upload/download throughput and latency) using over 3 million user-initiated tests from iOS and Android apps in 15 different metro areas collected over a 15 week period. Our basic performance comparisons show that (i) WiFi provides better absolute download/upload throughput, and a higher degree of consistency in performance; (ii) WiFi networks generally deliver lower absolute latency, but the consistency in latency is often better with cellular access; (iii) throughput and latency vary widely depending on the particular access type e.g., HSPA, EVDO, LTE, WiFi, etc.) and service provider. More broadly, our results show that performance consistency for cellular and WiFi is much lower than has been reported for wired broadband. Temporal analysis shows that average performance for cell and WiFi varies with time of day, with the best performance for large metro areas coming at non-peak hours. Spatial analysis shows that performance is highly variable across metro areas, but that there are subregions that offer consistently better performance for cell or WiFi. Comparisons between metro areas show that larger areas provide higher throughput and lower latency than smaller metro areas, suggesting where ISPs have focused their deployment efforts. Finally, our analysis reveals diverse performance characteristics resulting from the rollout of new cell access technologies and service differences among local providers.