A measurement study of a commercial-grade urban wifi mesh

  • Authors:
  • Vladimir Brik;Shravan Rayanchu;Sharad Saha;Sayandeep Sen;Vivek Shrivastava;Suman Banerjee

  • Affiliations:
  • University of Wisconsin Madison, Madison, WI, USA;University of Wisconsin Madison, Madison, WI, USA;University of Wisconsin Madison, Madison, WI, USA;University of Wisconsin Madison, Madison, WI, USA;University of Wisconsin Madison, Madison, WI, USA;University of Wisconsin Madison, Madison, WI, USA

  • Venue:
  • Proceedings of the 8th ACM SIGCOMM conference on Internet measurement
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a measurement study of a large-scale urban WiFi mesh network consisting of more than 250 Mesh Access Points (MAPs), with paying customers that use it for Internet access. Our study, involved collecting multi-modal data, e.g., through continuous gathering of SNMP logs, syslogs, passive traffic capture, and limited active measurements in different parts of the city. Our study is split into four components - planning and deployment of the mesh, success of mesh routing techniques, likely experience of users, and characterization of how the mesh is utilized. During our data collection process that spanned 8 months, the network changed many times due to hardware and software upgrades. Hence to present a consistent view of the network, the core dataset used in this paper comes from a two week excerpt of our dataset. This part of the dataset had more than 1.7 million SNMP log entries (from 224 MAPs) and more than 100 hours of active measurements. The scale of the study allowed us to make many important observations that are critical in planning and using WiFi meshes as an Internet access technology. For example, our study indicates that the last hop 2.4GHz wireless link between the mesh and the client is the major bottleneck in client performance. Further we observe that deploying the mesh access points on utility poles results in performance degradation for indoor clients that receive poor signal from the access points.