Block-Sparse RPCA for consistent foreground detection

  • Authors:
  • Zhi Gao;Loong-Fah Cheong;Mo Shan

  • Affiliations:
  • Interactive and Digital Media Institute, National University of Singapore, Singapore;ECE Department, National University of Singapore, Singapore;ECE Department, National University of Singapore, Singapore

  • Venue:
  • ECCV'12 Proceedings of the 12th European conference on Computer Vision - Volume Part V
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recent evaluation of representative background subtraction techniques demonstrated the drawbacks of these methods, with hardly any approach being able to reach more than 50% precision at recall level higher than 90%. Challenges in realistic environment include illumination change causing complex intensity variation, background motions (trees, waves, etc.) whose magnitude can be greater than the foreground, poor image quality under low light, camouflage etc. Existing methods often handle only part of these challenges; we address all these challenges in a unified framework which makes little specific assumption of the background. We regard the observed image sequence as being made up of the sum of a low-rank background matrix and a sparse outlier matrix and solve the decomposition using the Robust Principal Component Analysis method. We dynamically estimate the support of the foreground regions via a motion saliency estimation step, so as to impose spatial coherence on these regions. Unlike smoothness constraint such as MRF, our method is able to obtain crisply defined foreground regions, and in general, handles large dynamic background motion much better. Extensive experiments on benchmark and additional challenging datasets demonstrate that our method significantly outperforms the state-of-the-art approaches and works effectively on a wide range of complex scenarios.