3D2PM - 3d deformable part models

  • Authors:
  • Bojan Pepik;Peter Gehler;Michael Stark;Bernt Schiele

  • Affiliations:
  • Max Planck Institute for Informatics, Germany;Max Planck Institute for Intelligent Systems, Germany;Max Planck Institute for Informatics, Germany, Stanford University;Max Planck Institute for Informatics, Germany

  • Venue:
  • ECCV'12 Proceedings of the 12th European conference on Computer Vision - Volume Part VI
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

As objects are inherently 3-dimensional, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 2D feature-based models are the predominant paradigm in object recognition today. While such models have shown competitive bounding box (BB) detection performance, they are clearly limited in their capability of fine-grained reasoning in 3D or continuous viewpoint estimation as required for advanced tasks such as 3D scene understanding. This work extends the deformable part model [1] to a 3D object model. It consists of multiple parts modeled in 3D and a continuous appearance model. As a result, the model generalizes beyond BB oriented object detection and can be jointly optimized in a discriminative fashion for object detection and viewpoint estimation. Our 3D Deformable Part Model (3D2PM) leverages on CAD data of the object class, as a 3D geometry proxy.