Succinct posets

  • Authors:
  • J. Ian Munro;Patrick K. Nicholson

  • Affiliations:
  • David R. Cherition School of Computer Science, University of Waterloo, Canada;David R. Cherition School of Computer Science, University of Waterloo, Canada

  • Venue:
  • ESA'12 Proceedings of the 20th Annual European conference on Algorithms
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe an algorithm for compressing a partially ordered set, or poset, so that it occupies space matching the information theory lower bound (to within lower order terms), in the worst case. Using this algorithm, we design a succinct data structure for representing a poset that, given two elements, can report whether one precedes the other in constant time. This is equivalent to succinctly representing the transitive closure graph of the poset, and we note that the same method can also be used to succinctly represent the transitive reduction graph. For an n element poset, the data structure occupies n2/4+o(n2) bits, in the worst case, which is roughly half the space occupied by an upper triangular matrix. Furthermore, a slight extension to this data structure yields a succinct oracle for reachability in arbitrary directed graphs. Thus, using roughly a quarter of the space required to represent an arbitrary directed graph, reachability queries can be supported in constant time.