Efficient and robust shape retrieval from deformable templates

  • Authors:
  • Alexander E. Nezhinsky;Fons J. Verbeek

  • Affiliations:
  • Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands;Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

  • Venue:
  • ISoLA'12 Proceedings of the 5th international conference on Leveraging Applications of Formal Methods, Verification and Validation: applications and case studies - Volume Part II
  • Year:
  • 2012
  • Bioscientific data processing and modeling

    ISoLA'12 Proceedings of the 5th international conference on Leveraging Applications of Formal Methods, Verification and Validation: applications and case studies - Volume Part II

Quantified Score

Hi-index 0.00

Visualization

Abstract

Images with known shapes can be analyzed through template matching and segmentation; in this approach the question is how to represent a known shape. The digital representation to which the shape is sampled, the image, may be subject to noise. If we compare a known and idealized shape to the real-life occurrences, a considerable variation is observed. With respect to the shape, this variation can have affine characteristics as well as non-linear deformations. We propose a method based on a deformable template starting from a low-level vision and proceeding to high-level vision. The latter part is typically application dependent, here the shapes are annotated according to an ideal template and are normalized by a straightening process. The underlying algorithm can deal with a range of deformations and does not restrict to a single instance of a shape in the image. Experimental results from an application of the algorithm illustrate low error rate and robustness of the method. The life sciences are a challenging area in terms of applications in which a considerable variation of the shape of object instances is observed. Successful application of this method would be typically suitable for automated procedures such as those required for biomedical high-throughput screening. As a case study, we, therefore, illustrate our method in this context, i.e. retrieving instances of shapes obtained from a screening experiment.