Inexact subgraph isomorphism in MapReduce

  • Authors:
  • Todd Plantenga

  • Affiliations:
  • -

  • Venue:
  • Journal of Parallel and Distributed Computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Inexact subgraph matching based on type-isomorphism was introduced by Berry et al. [J. Berry, B. Hendrickson, S. Kahan, P. Konecny, Software and algorithms for graph queries on multithreaded architectures, in: Proc. IEEE International Parallel and Distributed Computing Symposium, IEEE, 2007, pp. 1-14] as a generalization of the exact subgraph matching problem. Enumerating small subgraph patterns in very large graphs is a core problem in the analysis of social networks, bioinformatics data sets, and other applications. This paper describes a MapReduce algorithm for subgraph type-isomorphism matching. The MapReduce computing framework is designed for distributed computing on massive data sets, and the new algorithm leverages MapReduce techniques to enable processing of graphs with billions of vertices. The paper also introduces a new class of walk-level constraints for narrowing the set of matches. Constraints meeting criteria defined in the paper are useful for specifying more precise patterns and for improving algorithm performance. Results are provided on a variety of graphs, with size ranging up to billions of vertices and edges, including graphs that follow a power law degree distribution.