Accurate caloric expenditure of bicyclists using cellphones

  • Authors:
  • Andong Zhan;Marcus Chang;Yin Chen;Andreas Terzis

  • Affiliations:
  • Johns Hopkins University, Baltimore, MD;Johns Hopkins University, Baltimore, MD;Johns Hopkins University, Baltimore, MD;Johns Hopkins University, Baltimore, MD

  • Venue:
  • Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Biking is one of the most efficient and environmentally friendly ways to control weight and commute. To precisely estimate caloric expenditure, bikers have to install a bike computer or use a smartphone connected to additional sensors such as heart rate monitors worn on their chest, or cadence sensors mounted on their bikes. However, these peripherals are still expensive and inconvenient for daily use. This work poses the following question: is it possible to use just a smartphone to reliably estimate cycling activity? We answer this question positively through a pocket sensing approach that can reliably measure cadence using the phone's on-board accelerometer with less than 2% error. Our method estimates caloric expenditure through a model that takes as inputs GPS traces, the USGS elevation service, and the detailed road database from OpenStreetMap. The overall caloric estimation error is 60% smaller than other smartphone-based approaches. Finally, the smartphone can aggressively duty-cycle its GPS receiver, reducing energy consumption by 57%, without any degradation in the accuracy of caloric expenditure estimates. This is possible because we can recover the bike's route, even with fewer GPS location samples, using map information from the USGS and OpenStreetMap databases.