The BikeNet mobile sensing system for cyclist experience mapping

  • Authors:
  • S. B. Eisenman;E. Miluzzo;N. D. Lane;R. A. Peterson;G-S. Ahn;A. T. Campbell

  • Affiliations:
  • Columbia University;Dartmouth College;Dartmouth College;Dartmouth College;Columbia University;Dartmouth College

  • Venue:
  • Proceedings of the 5th international conference on Embedded networked sensor systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe our experiences deploying BikeNet, an extensible mobile sensing system for cyclist experience mapping leveraging opportunistic sensor networking principles and techniques. BikeNet represents a multifaceted sensing system and explores personal, bicycle, and environmental sensing using dynamically role-assigned bike area networking based on customized Moteiv Tmote Invent motes and sensor-enabled Nokia N80 mobile phones. We investigate real-time and delay-tolerant uploading of data via a number of sensor access points (SAPs) to a networked repository. Among bicycles that rendezvous en route we explore inter-bicycle networking via data muling. The repository provides a cyclist with data archival, retrieval, and visualization services. BikeNet promotes the social networking of the cycling community through the provision of a web portal that facilitates back end sharing of real-time and archived cycling-related data from the repository. We present: a description and prototype implementation of the system architecture, an evaluation of sensing and inference that quantifies cyclist performance and the cyclist environment; a report on networking performance in an environment characterized by bicycle mobility and human unpredictability; and a description of BikeNet system user interfaces. Visit [4] to see how the BikeNet system visualizes a user's rides.