Sidewinder: a predictive data forwarding protocol for mobile wireless sensor networks

  • Authors:
  • Matthew Keally;Gang Zhou;Guoliang Xing

  • Affiliations:
  • Computer Science Department, College of William and Mary;Computer Science Department, College of William and Mary;Department of Computer Science and Engineering, Michigan State University

  • Venue:
  • SECON'09 Proceedings of the 6th Annual IEEE communications society conference on Sensor, Mesh and Ad Hoc Communications and Networks
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

In-situ data collection for mobile wireless sensor network deployments has received little study, such as in the case of floating sensor networks for storm surge and innundation monitoring. We demonstrate through quantitative study that traditional approaches to routing in mobile environments do not work well due to volatile topology changes. Consequently, we propose Sidewinder, a predictive data forwarding protocol for mobile wireless sensor networks. Like a heat-seeking missile, data packets are guided towards a sink node with increasing accuracy as packets approach the sink. Different from conventional sensor network routing protocols, Sidewinder continuously predicts the current sink location based on distributed knowledge of sink mobility among nodes in a multi-hop routing process. Moreover, the continuous sink estimation is scaled and adjusted to perform with resource-constrained wireless sensors. Our design is implemented with nesC and evaluated in TOSSIM. The performance evaluation demonstrates that Sidewinder significantly outperforms state-of-the-art solutions in packet delivery ratio, time delay, and energy efficiency.