Geographic routing made practical

  • Authors:
  • Young-Jin Kim;Ramesh Govindan;Brad Karp;Scott Shenker

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA;Intel Research/CMU, Pittsburgh, PA;UCB/ICSI, Berkeley, CA

  • Venue:
  • NSDI'05 Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation - Volume 2
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Geographic routing has been widely hailed as the most promising approach to generally scalable wireless routing. However, the correctness of all currently proposed geographic routing algorithms relies on idealized assumptions about radios and their resulting connectivity graphs. We use testbed measurements to show that these idealized assumptions are grossly violated by real radios, and that these violations cause persistent failures in geographic routing, even on static topologies. Having identified this problem, we then fix it by proposing the Cross-Link Detection Protocol (CLDP), which enables provably correct geographic routing on arbitrary connectivity graphs. We confirm in simulation and further testbed measurements that CLDP is not only correct but practical: it incurs low overhead, exhibits low path stretch, always succeeds in real, static wireless networks, and converges quickly after topology changes.