Balancing traffic load in wireless networks with curveball routing

  • Authors:
  • Lucian Popa;Afshin Rostamizadeh;Richard Karp;Christos Papadimitriou;Ion Stoica

  • Affiliations:
  • UC Berkeley, Berkeley, CA;NYU, New York, NY;UC Berkeley, Berkeley, CA;UC Berkeley, Berkeley, CA;UC Berkeley, Berkeley, CA

  • Venue:
  • Proceedings of the 8th ACM international symposium on Mobile ad hoc networking and computing
  • Year:
  • 2007

Quantified Score

Hi-index 0.01

Visualization

Abstract

We address the problem of balancing the traffic load in multi-hop wireless networks. We consider a point-to-point communicating network with a uniform distribution of source-sink pairs. When routing along shortest paths, the nodes that are centrally located forward a disproportionate amount of traffic. This translates into increased congestion and energy consumption. However, the maximum load can be decreased if the packets follow curved paths. We show that the optimum such routing scheme can be expressed in terms of geometric optics and computed by linear programming. We then propose a practical solution, which we call Curveball Routing which achieves results not much worse than the optimum. We evaluate our solution at three levels of fidelity: a Java high-level simulator, the ns2 simulator, and the Intel Mirage Sensor Network Testbed. Simulation results using the high-level simulator show that our solution successfully avoids the crowded center of the network, and reduces the maximum load by up to 40%. At the same time, the increase of the expected path length is minimal, i.e., only 8% on average. Simulation results using the ns2 simulator show that our solution can increase throughput on moderately loaded networks by up to 15%, while testbed results show a reduction in peak energy usage by up to 25%. Our prototype suggests that our solution is easily deployable.