S4: small state and small stretch compact routing protocol for large static wireless networks

  • Authors:
  • Yun Mao;Feng Wang;Lili Qiu;Simon Lam;Jonathan Smith

  • Affiliations:
  • AT&T Research, Florham Park, NJ and University of Texas at Austin, Austin, TX;Meraki, San Francisco, CA and University of Texas at Austin, Austin, TX;University of Texas at Austin, Austin, TX;University of Texas at Austin, Austin, TX;University of Pennsylvania, Philadelphia, PA

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Routing protocols for large wireless networks must address the challenges of reliable packet delivery at increasingly large scales and with highly limited resources. Attempts to reduce routing state can result in undesirable worst-case routing performance, as measured by stretch, which is the ratio of the hop count of the selected path to that of the optimal path. We present a new routing protocol, Small State and Small Stretch (S4), which jointly minimizes the state and stretch. S4 uses a combination of beacon distance-vector-based global routing state and scoped distance-vector-based local routing state to achieve a worst-case stretch of 3 using O(√N routing state per node in an N-node network. Its average routing stretch is close to 1. S4 further incorporates local failure recovery to achieve resilience to dynamic topology changes. We use multiple simulation environments to assess performance claims at scale and use experiments in a 42-node wireless sensor network testbed to evaluate performance under realistic RF and failure dynamics. The results show that S4 achieves scalability, efficiency, and resilience in a wide range of scenarios.