Agilla: A mobile agent middleware for self-adaptive wireless sensor networks

  • Authors:
  • Chien-Liang Fok;Gruia-Catalin Roman;Chenyang Lu

  • Affiliations:
  • Washington University in St. Louis, MO;Washington University in St. Louis, MO;Washington University in St. Louis, MO

  • Venue:
  • ACM Transactions on Autonomous and Adaptive Systems (TAAS)
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This article presents Agilla, a mobile agent middleware designed to support self-adaptive applications in wireless sensor networks. Agilla provides a programming model in which applications consist of evolving communities of agents that share a wireless sensor network. Coordination among the agents and access to physical resources are supported by a tuple space abstraction. Agents can dynamically enter and exit a network and can autonomously clone and migrate themselves in response to environmental changes. Agilla's ability to support self-adaptive applications in wireless sensor networks has been demonstrated in the context of several applications, including fire detection and tracking, monitoring cargo containers, and robot navigation. Agilla, the first mobile agent system to operate in resource-constrained wireless sensor platforms, was implemented on top of TinyOS. Agilla's feasibility and efficiency was demonstrated by experimental evaluation on two physical testbeds consisting of Mica2 and TelosB nodes.