Collecting heart rate using a high precision, non-contact, single-point infrared temperature sensor

  • Authors:
  • Laura Boccanfuso;Eva Juarez Perez;Myra Robinson;Jason M. O'Kane

  • Affiliations:
  • University of South Carolina, South Carolina, SC;University of South Carolina, South Carolina, SC;University of South Carolina, South Carolina, SC;University of South Carolina, South Carolina, SC

  • Venue:
  • ICSR'12 Proceedings of the 4th international conference on Social Robotics
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Remotely detecting the physiological state of humans is becoming increasingly important for rehabilitative robotics (RR) and socially assistive robotics (SAR) because it makes robots better-suited to work more closely and more cooperatively with humans. This research delivers a new non-contact technique for detecting heart rate in real time using a high precision, single-point infrared sensor. The proposed approach is an important potential improvement over existing methods because it collects heart rate information unencumbered by biofeedback sensors, complex computational processing or high cost equipment. We use a thermal infrared sensor to capture subtle changes in the sub-nasal skin surface temperature to monitor cardiac pulse. This study extends our previous research in which breathing rate is automatically extracted using the same hardware. Experiments conducted to test the proposed system accuracy show that in 72.7% of typical cases heart rate was successfully detected within 0-9 beats per minute as measured by root-mean-square error.