SwarmSimX: real-time simulation environment for multi-robot systems

  • Authors:
  • Johannes Lächele;Antonio Franchi;Heinrich H. Bülthoff;Paolo Robuffo Giordano

  • Affiliations:
  • Max Planck Institute for Biological Cybernetics, Tübingen, Germany;Max Planck Institute for Biological Cybernetics, Tübingen, Germany;Max Planck Institute for Biological Cybernetics, Tübingen, Germany,Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea;Max Planck Institute for Biological Cybernetics, Tübingen, Germany

  • Venue:
  • SIMPAR'12 Proceedings of the Third international conference on Simulation, Modeling, and Programming for Autonomous Robots
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we present a novel simulation environment called SwarmSimX with the ability to simulate dozens of robots in a realistic 3D environment. The software architecture of SwarmSimX allows new robots, sensors, and other libraries to be loaded at runtime, extending the functionality of the simulation environment significantly. In addition, SwarmSimX allows an easy exchange of the underlying libraries used for the visual and physical simulation to incorporate different libraries (e.g., improved or future versions). A major feature is also the possibility to perform the whole simulation in real-time allowing for human-in-the-loop or hardware-in-the-loop scenarios. SwarmSimX has been already employed in several works presenting haptic shared control of multiple mobile robots (e.g., quadrotor UAVs). Additionally, we present here two validation tests showing the physical fidelity and the real-time performance of SwarmSimX. For the tests we used NVIDIA® PhysX® and Ogre3D as physics and rendering libraries, respectively.