Automating relatively complete verification of higher-order functional programs

  • Authors:
  • Hiroshi Unno;Tachio Terauchi;Naoki Kobayashi

  • Affiliations:
  • University of Tsukuba, Tsukuba, Japan;Nagoya University, Nagoya, Japan;University of Tokyo, Tokyo, Japan

  • Venue:
  • POPL '13 Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an automated approach to relatively completely verifying safety (i.e., reachability) property of higher-order functional programs. Our contribution is two-fold. First, we extend the refinement type system framework employed in the recent work on (incomplete) automated higher-order verification by drawing on the classical work on relatively complete "Hoare logic like" program logic for higher-order procedural languages. Then, by adopting the recently proposed techniques for solving constraints over quantified first-order logic formulas, we develop an automated type inference method for the type system, thereby realizing an automated relatively complete verification of higher-order programs.