A simulation-based approach to capturing autocorrelated demand parameter uncertainty in inventory management

  • Authors:
  • Alp Akcay;Bahar Biller;Sridhar Tayur

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Proceedings of the Winter Simulation Conference
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider a repeated newsvendor setting where the parameters of the demand distribution are unknown, and we study the problem of setting inventory targets using only a limited amount of historical demand data. We assume that the demand process is autocorrelated and represented by an Autoregressive-To-Anything time series. We represent the marginal demand distribution with the highly flexible Johnson translation system that captures a wide variety of distributional shapes. Using a simulation-based sampling algorithm, we quantify the expected cost due to parameter uncertainty as a function of the length of the historical demand data, the critical fractile, the parameters of the marginal demand distribution, and the autocorrelation of the demand process. We determine the improved inventory-target estimate accounting for this parameter uncertainty via sample-path optimization.