Fast concurrent queues for x86 processors

  • Authors:
  • Adam Morrison;Yehuda Afek

  • Affiliations:
  • Tel Aviv University, Tel Aviv, Israel;Tel Aviv University, Tel Aviv, Israel

  • Venue:
  • Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Conventional wisdom in designing concurrent data structures is to use the most powerful synchronization primitive, namely compare-and-swap (CAS), and to avoid contended hot spots. In building concurrent FIFO queues, this reasoning has led researchers to propose combining-based concurrent queues. This paper takes a different approach, showing how to rely on fetch-and-add (F&A), a less powerful primitive that is available on x86 processors, to construct a nonblocking (lock-free) linearizable concurrent FIFO queue which, despite the F&A being a contended hot spot, outperforms combining-based implementations by 1.5x to 2.5x in all concurrency levels on an x86 server with four multicore processors, in both single-processor and multi-processor executions.