History-Register automata

  • Authors:
  • Nikos Tzevelekos;Radu Grigore

  • Affiliations:
  • Queen Mary, University of London, UK;Queen Mary, University of London, UK

  • Venue:
  • FOSSACS'13 Proceedings of the 16th international conference on Foundations of Software Science and Computation Structures
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Programs with dynamic allocation are able to create and use an unbounded number of fresh resources, such as references, objects, files, etc. We propose History-Register Automata (HRA), a new automata-theoretic formalism for modelling and analysing such programs. HRAs extend the expressiveness of previous approaches and bring us to the limits of decidability for reachability checks. The distinctive feature of our machines is their use of unbounded memory sets (histories) where input symbols can be selectively stored and compared with symbols to follow. In addition, stored symbols can be consumed or deleted by reset. We show that the combination of consumption and reset capabilities renders the automata powerful enough to imitate counter machines (Petri nets with reset arcs), and yields closure under all regular operations apart from complementation. We moreover examine weaker notions of HRAs which strike different balances between expressiveness and effectiveness.