Production-run software failure diagnosis via hardware performance counters

  • Authors:
  • Joy Arulraj;Po-Chun Chang;Guoliang Jin;Shan Lu

  • Affiliations:
  • University of Wisconsin, Madison, WI, USA;University of Wisconsin, Madison, WI, USA;University of Wisconsin, Madison, WI, USA;University of Wisconsin, Madison, WI, USA

  • Venue:
  • Proceedings of the eighteenth international conference on Architectural support for programming languages and operating systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Sequential and concurrency bugs are widespread in deployed software. They cause severe failures and huge financial loss during production runs. Tools that diagnose production-run failures with low overhead are needed. The state-of-the-art diagnosis techniques use software instrumentation to sample program properties at run time and use off-line statistical analysis to identify properties most correlated with failures. Although promising, these techniques suffer from high run-time overhead, which is sometimes over 100%, for concurrency-bug failure diagnosis and hence are not suitable for production-run usage. We present PBI, a system that uses existing hardware performance counters to diagnose production-run failures caused by sequential and concurrency bugs with low overhead. PBI is designed based on several key observations. First, a few widely supported performance counter events can reflect a wide variety of common software bugs and can be monitored by hardware with almost no overhead. Second, the counter overflow interrupt supported by existing hardware and operating systems provides a natural and effective mechanism to conduct event sampling at user level. Third, the noise and non-determinism in interrupt delivery complements well with statistical processing. We evaluate PBI using 13 real-world concurrency and sequential bugs from representative open-source server, client, and utility programs, and 10 bugs from a widely used software-testing benchmark. Quantitatively, PBI can effectively diagnose failures caused by these bugs with a small overhead that is never higher than 10%. Qualitatively, PBI does not require any change to software and presents a novel use of existing hardware performance counters.